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Abstract
The He–McKellar–Wilkens (HMW) effect for spin one neutral particles in
non-commutative quantum mechanics is studied. By solving the Kemmer-like
equations on the non-commutative (NC) space and non-commutative phase
space, we obtain the topological He–McKellar–Wilkens phase on the NC
space and NC phase space respectively, where the additional terms related
to the space–space and momentum–momentum non-commutativity are given
explicitly.

PACS numbers: 02.40.Gh, 11.10.Nx, 03.65.−w

1. Introduction

The study of physics effects on the non-commutative space has attracted much attention in
recent years. Because the effects of the space non-commutativity may become significant at
the very high (Tev or above) energy scale. Besides the field theory, there are many papers
devoted to the study of various aspects of quantum mechanics on NC space with a usual
time coordinate [1–10]. For example, the Aharonov–Bohm phase on the NC space and NC
phase space has been studied in [2–4]. The Aharonov–Casher phase for a spin half and spin-1
particle on the NC space and NC phase space has been studied in [5–8]. The equivalence of the
Aharonov–Bohm and Aharonov–Casher effects was studied in the relativistic case for spin half
particles in [11]. The He–McKellar–Wilkens (HMW) effect on commutative space was firstly
discussed in 1993 by He and Meckellar [12] and a year later, independently by Wilkens [13].
The HMW effect corresponds to a topological phase related to a neutral particle with non-zero
electric dipole moment moving in a pure magnetic field, and in 1998, Dowling, Williams and
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Franson pointed out that the HMW effect can be partially tested using metastable hydrogen
atoms [14]. The HMW phase for a spin half particle on the NC space and NC phase space
has been studied in [9], but there is no discussion about the HMW effect for spin one neutral
particles in the literature, so in this paper we study the HMW effect of spin one particles.

Let us first review some basic concepts of NC quantum mechanics. In the usual
commutative case the algebra of observables A is generated by operators x and p satisfying
the standard commutation relations (we take h̄ = c = 1)

[xν, xλ] = [pν, pλ] = 0, [xν, pλ] = iδνλ. (1)

In the NC case the commutators of the generators of the algebra of observables Â are replaced
by the deformed ones, i.e. the deformed x̂ and p̂ satisfy [10]

[x̂ν, x̂λ] = i�νλ, [p̂ν, p̂λ] = i�̄νλ, [x̂ν, p̂λ] = iδνλ. (2)

The NC variables can be expressed (up to some singular cases) as

x̂ν = αxν − 1

2α
�νλp

λ, p̂ν = αpν +
1

2α
�̄νλx

λ. (3)

Therefore, the algebras A and Â are the same. The pure states in both cases are given as
wavefunctions ψ(x) in the Hilbert space. In the NC case one has the following action (up to
terms linear in θ ’s): x̂ψ(x) = (αx − (1/2α)θ ∧ p)ψ(x), p̂ψ(x) = (αp + (1/2α)θ̄ ∧ x)ψ(x).

The difference between usual quantum mechanics and NC quantum mechanics are visible only
after the choice of the Hamiltonian. If the usual Hamiltonian is given as H = H(p, x), then
the standard choice for the NC Hamiltonian Ĥ = H(p̂, x̂) determines the NC interpretation
of the NC quantum mechanics system in question. The corresponding Schrödinger equation
contains the action on a wavefunction described above. Therefore, there are no differences at
the level of kinematics between the usual quantum mechanics and the NC quantum mechanics;
the difference between them is specified by dynamics.

In NC quantum mechanics, the Schrödinger equation, as we know, can be written as
H(p, x) ∗ ψ(p, x) = Eψ(p, x), from the discussion above, this NC Schrödinger equation
can be equivalently written by H(p̂, x̂)ψ(p, x) = Eψ(p, x), i.e. the star product can be
changed into an ordinary product by making shifts [10] x → x̂, p → p̂. In the case of this
paper, the Hamiltonian also depends on the dual of the electromagnetic tensor F̃ , so, when the
star product is replaced by the usual product in the Schrödinger equation, the F̃ should also
be shifted as,

F̃νλ → ˆ̃Fνλ = αF̃νλ +
1

2α
�ρσpρ∂σ F̃νλ. (4)

When only space–space non-commutativity is considered we call it the NC space, when
both space–space and momentum–momentum non-commutativity are considered we call it
the NC phase space. On NC space, �̄ = 0, and it leads to α = 1, the equations (3) and (4) are
reduced to the well-known results [2]:

x̂ν = xν − 1
2�νλp

λ, p̂ν = pν, (5)

F̃νλ → ˆ̃Fνλ = F̃νλ + 1
2�ρσpρ∂σ F̃νλ. (6)

In this paper, first we discuss He–McKellar–Wilkens effect for a spin-1 neutral particle
with non-zero electric dipole moment moving in the magnetic field on commutative space.
Then we study the He–McKellar–Wilkens effect on non-commutative space and give a
generalized formula of the HMW phase. We also give a generalized formula of the HMW
phase on the non-commutative phase space. Conclusion remarks are given in the last section.
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2. The HMW effect for spin one particles in quantum mechanics

In a similar way as in Aharonov–Bohm, Aharonov–Casher topological effects, the He–
McKellar–Wilkens effect can also be studied in 2 + 1 dimension. The ordinary configuration
for HWM effect is a neutral particle with nonzero electric dipole moment µe moves in a
pure magnetic field produced by an infinitely long filament which is uniformly charged with
magnetic charge (monopoles) and the filament is perpendicular to the plane, let us say the
x–y plane, then the problem can be treated in 2 + 1 spacetime. We use the conventions
gµν = diag(1,−1,−1).

The Dirac-like equation of a spin one neutral particle with electric dipole µe moving in
the electromagnetic field is called Kemmer equation and is given by [18](

iβν∂ν − 1
2µeSλρF̃

λρ − m
)
φ = 0, (7)

where F̃µν = 1
2εµναβF αβ is the 3 + 1-dimensional dual of the electromagnetic field tensor. In

2 + 1 dimensions, its explicit form is

F̃µν =

⎛
⎜⎝

0 −B1 −B2

B1 0 −E3

B2 E3 0

⎞
⎟⎠ ,

the 10 × 10 matrices βν are generalization of the 4 × 4 Dirac gamma matrices, and it can be
chosen as follows [17–20]

β0 =

⎛
⎜⎜⎜⎜⎝

Ô Ô I o†

Ô Ô Ô o†

I Ô Ô o†

o o o 0

⎞
⎟⎟⎟⎟⎠ , βj =

⎛
⎜⎜⎜⎜⎝

Ô Ô Ô −iKj†

Ô Ô Sj o†

Ô −Sj Ô o†

−iKj o o 0

⎞
⎟⎟⎟⎟⎠ ,

with j = 1, 2, 3. The elements of the 10 × 10 matrices βν are given by the matrices

Ô =

⎛
⎜⎝

0 0 0

0 0 0

0 0 0

⎞
⎟⎠ , I =

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ ,

S1 = i

⎛
⎜⎝

0 0 0

0 0 −1

0 1 0

⎞
⎟⎠ , S2 = i

⎛
⎜⎝

0 0 1

0 0 0

−1 0 0

⎞
⎟⎠ , S3 = i

⎛
⎜⎝

0 −1 0

1 0 0

0 0 0

⎞
⎟⎠ ,

o = (0 0 0), K1 = (1 0 0), K2 = (0 1 0), K3 = (0 0 1).

The above β matrices satisfy the following relation

βνβλβρ + βρβλβν = βνgλρ + βρgνλ. (8)

And other algebraic properties of the Kemmer β-matrices were given in [18]. Sλρ is the Dirac
σλρ like spin operator, which can be defined as

Sλρ = 1
2 (βλβρ − βρβλ). (9)

The solution of the Kemmer equation can be written in the following form

φ = e−iξ3
∫ r a·drφ0, (10)
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where φ0 is a solution of the free Kemmer equation; the spin one pseudo-vector operator ξν in
(10) is defined as

ξν = i

2
ενλρσβλβρβσ , (11)

where ενλρσ is the Levi-Civita symbol in four dimensions. Now we need to find the explicit
form of the vector a in (10). To do this, first we write the free Kemmer equation for φ0 in
terms of φ

(iβν∂ν − m) eiξ3
∫ r a·drφ = 0 (12)

We impose the following two conditions in order to have the equivalence of (7) and (12)

e−iξ3
∫ r a·drβνeiξ3

∫ r a·dr = βν, (13)

and

βνξ3aνφ = 1
2µeSλρF̃

λρφ = µeS0l F̃
0lφ. (14)

By comparing (13) with the Baker–Housdorf formula

e−iλξ3βνeiλξ3 = βν + ℘(−iλ)[ξ3, β
ν] +

1

2!
℘(−iλ)2[ξ3, [ξ3, β

ν]] . . . , (15)

we get, [ξ3, β
ν] = 0, where ℘ stands for path ordering of the integral in the phase. If ν �= 3

this commutation relation is automatically satisfied, however, for ν = 3, by using (8) and (11),
we find that the commutator does not vanish. Thus, to satisfy the first condition we restrict
the particle in the x–y plane, that is, Bz = 0. In particular ∂3φ = 0 and a3 = 0. From (14), by
using (8), (9) and (11), one obtains

al = 2µeεlkBk, l, k = 1, 2. (16)

Thus the HMW phase for a neutral spin one particle moving in a 2 + 1 spacetime under the
influence of a pure magnetic field produced by an infinitely long filament which is uniformly
charged with magnetic monopoles is given by

φHMW = ξ3

∮
a · dr = 2µeξ3ε

lk

∮
Bl dxk = 2µeξ3

∮
(−B1 dx2 + B2 dx1). (17)

The above equation can also be written as

φHMW = ξ3

∮
a · dr = ξ3

∫
S

(∇ × a) · dS = 2µeξ3

∫
S

(∇ · B) dS = 2µeξ3λm, (18)

where λm is the magnetic charge density of the filament. This spin one the HMW phase is
also purely quantum mechanical effect and has no classical interpretation. One may note that
the HMW phase for spin one particles is exactly the same as those for spin half, except that
the spin operator and spinor have changed. The factor of two shows that the phase is twice
that accumulated by a spin half particle with the same electric dipole moment, in the same
magnetic field.

3. HMW effect for spin one particles in non-commutative quantum mechanics

In this section we study HMW effect for spin one particles both on the NC space and NC
phase space. By replacing the usual product in (7) with a star product (Moyal–Weyl product),
the Kemmer equation for a spin one neutral particle with a electric dipole moment µe, on NC
space, can be written as(

iβν∂ν − 1
2µeSλρF̃

λρ − m
) ∗ φ = 0, (19)

4
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By (6), we replace the star product in (19) with the ordinary product, then the Kemmer equation
on the NC space has the form(

iβν∂ν − 1
2µeSλρ

ˆ̃F
λρ − m

)
φ = 0. (20)

In a similar way as the commuting space, the solution of the above equation can also be written
as

φ = e−iξ3
∫ r â·drφ0. (21)

To determine â we write the free Kemmer equation as

(iβν∂ν − m) eiξ3
∫ r â·drφ = 0. (22)

The equivalence of (20) and (22) gives the following two conditions

e−iξ3
∫ r â·drβνe‘iξ3

∫ r â·dr = βν (23)

and

βνξ3âνφ = 1
2µeS

λρ ˆ̃Fλρφ = µeS
0l ˆ̃F 0lφ. (24)

By using (15), the first condition (23) implies that, [ξ3, β
ν] = 0. If ν �= 3 then this commutation

relation is automatically satisfied; however, for ν = 3, by using (8) and (11), one finds that
the commutator does not vanish. Therefore, in order to fulfil the first condition we restrict the
particle in 2 + 1 spacetime. In particular ∂3φ = 0 and â3 = 0. From (24), and by using (8),
(9) and (11), we obtain

â1 = 2µe
ˆ̃F 02 = 2µeF̃02 + 2µe

1
2�ijpi∂j F̃02 = 2µeB2 + µeθεijpi∂jB2

â2 = −2µe
ˆ̃F 01 = −2µeF̃01 − 2µe

1
2�ijpi∂j F̃01 = −2µeB1 + µeθεijpi∂jB1

(25)

with �ij = θεij ,�0µ = �µ0 = 0; εij = −εji, ε12 = +1. Thus the HMW phase for a
neutral spin one particle moving in a 2 + 1 non-commutative space under the influence of a
pure magnetic field produced by an infinitely long filament which is uniformly charged with
magnetic monopoles, is

φ̂HMW = ξ3

∮
â · dr = 2µeξ3ε

lk

∮
Bl dxk + µeξ3θεij εlk

∮
pi∂jBl dxk. (26)

In a similar way as in spin half case [9], the momentum on NC space for a spin-1 neutral
particle can also be written as

pi = mvi + ( �B × �µ)i + O(θ), (27)

where �µ = 2µe
�S, and �S is the spin operator of the spin one. By inserting (27) into (26), we

have

φ̂HMW = φHMW + δφNCS, (28)

where φHMW is the HMW phase (17) on the commuting space; the additional phase δφNCS,
related to the non-commutativity of space, is given by

δφNCS = µeξ3θεij εlk

∮
[ki − (�µ × �B)i]∂jBl dxk (29)

where ki = mvi is the wave number; the ξ3 in the phase represents the spin degrees of freedom.

If the spin of the neutral particle along the z direction, namely, �µ = 2µes3 �̂k, then the above
equation takes the form

δφNCS = µeξ3θεij εlk

∮
[ki − 2µes3(�̂k × �B)i]∂jBl dxk, (30)

where �̂k is a unit vector in the z direction; s3 = 1, 0,−1.

5
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Now we discuss the HMW phase on the NC phase space. From (3), (4) and (19), the
Kemmer equation for HMW problem on the NC phase space has the form(−βνp̂ν − 1

2µeSλρ
ˆ̃F

λρ − m
)
φ = 0. (31)

Because α �= 0, the above equation can be written as(
−βνpν − 1

2α2
βν�̄νλx

λ − 1

2
µeSλρ(F̃

λρ +
1

2α2
�στpσ ∂τ F̃

λρ) − m′
)

φ = 0. (32)

where m′ = m/α. We write the above equation in the following form

(−βνpν − m′) e
i

2α2

∫ r
�̄νλx

λ dxν+iξ3
∫ r â′ ·dr

φ = 0. (33)

To have the equivalence of (32) and (33), we impose the following two conditions

e−iξ3
∫ r â′ ·drβνeiξ3

∫ r â′ ·dr = βν, (34)

and

− βνξ3â
′
νφ = 1

2α
µeSλρ

ˆ̃F
λρ

φ = µe

α
S0l

ˆ̃F
0l

φ. (35)

In an analogous way as in NC space, from (34) and (35) one obtains

â′
1 = 2µe

α
ˆ̃F

02 = 2µeF̃
02 + 2µe

1

2α2
�ijpi∂j F̃

02 = 2µeB2 +
µeθ

α2
εijpi∂jB2,

â′
2 = −2µe

α
ˆ̃F

01 = −2µeF̃
01 − 2µe

1

2α2
�ijpi∂j F̃

01 = −2µeB1 − µeθ

α2
θεijpi∂jB1, (36)

â′
3 = 0.

Thus the HMW phase for a neutral spin one particle moving in a 2 + 1 non-commutative phase
space under the influence of a pure magnetic field produced by an infinitely long filament,
which is uniformly charged with magnetic monopoles, and which is perpendicular to the plane,
is given by

φ̂HMW = 1

2α2

∮
�̄νλx

λ dxν + ξ3

∮
â′ · dr

= θ

2α2

∮
εij xj dxi + 2µeξ3ε

lk

∮
Bl dxk + µeξ3

θ

α2
εij εlk

∮
pi∂jBl dxk (37)

By using pi = k′
i + ( �B × �µ)i + O(θ), and k′

i = m′
ivi , �µ = 2µe

�S, one obtains

ϕ̂HMW = φHMW + δφNCS + δφNCPS, (38)

where φHMW is the HMW phase (17) on the commuting space; δφNCS is the space–space
non-commuting contribution to the HMW phase (17) , and its explicit form is given in (29);
the last term δφNCPS is the momentum–momentum non-commuting contribution to the HMW
phase, and it has the form

δφNCPS = θ̄

2α2

∮
εij xj dxi +

(
1

α2
− 1

)
µeξ3θεij εlk

∮
k′
i∂jBl dxk

−
(

1

α2
− 1

)
µeξ3θεij εlk

∮
(�µ × �B)i∂jBl dxk, (39)

which represents the non-commutativity of the momenta. The first term in (39) comes
from the momentum–momentum non-commutativity; the second term is a velocity dependent
correction and does not have the topological properties of the commutative HMW effect and
could modify the phase shift; the third term is a correction to the vortex and does not contribute
to the line spectrum. In two-dimensional non-commutative plane, �̄ij = θ̄ εij , and the two
NC parameters θ and θ̄ are related by θ̄ = 4α2(1 − α2)/θ [10]. When α = 1, which will lead
to θ̄ij = 0, then the HMW phase on the NC phase space will return to the HMW phase on NC
space, i.e. δφNCPS = 0 and equation (38) will change to equation (28).
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4. Conclusion remarks

There are two methods, namely, star product and shift method, to study physical effects on the
NC space and NC phase space. In this paper, first study the HMW effect in quantum mechanics.
Then by using the shift method we give the NC space corrections to the topological phase of
the HMW effect for a spin one neutral particle. Furthermore, by considering the momentum–
momentum non-commutativity we obtain the NC phase space corrections to the topological
phase of the HMW effect for a spin one neutral particle. We note that the corrections (29) and
(39) to the topological phase (17) or (18) of the HMW effect for a spin one neutral particle both
on the NC space and NC phase space can be obtained from spin half corrections [9] through
the replacement 1

2γ 0σ 12 −→ ξ3. One may conclude that, apart from the spin operators, the
NC HMW phase for a higher spin neutral particle is the same as those for spin half and spin
one case in non-commutative quantum mechanics.

The method we use in this paper may also be employed to other physics problem on the
NC space and NC phase space.
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